Sudoku Programmers Forum Index

 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister   ProfileProfile   Log inLog in          Games  Calendar

Log in to check your private messagesLog in to check your private messages   

Is this Samurai puzzle unique?

 
Post new topic   Reply to topic    Sudoku Programmers Forum Index -> Exotic sudoku
View previous topic :: View next topic  
Author Message
garthd

Joined: 29 Apr 2006
Posts: 32
:

Items
PostPosted: Thu Aug 06, 2009 12:13 pm    Post subject: Is this Samurai puzzle unique? Reply with quote

I have a samurai generator which has come up with the following puzzle. My solver reckons the following samurai / gattai puzzle has a single unique solution...

Code:
..9...6.......8......6....11...7....9.82..7..3.69......5.3...8..8..4........5....
..............4......27.5.6.9.....3...3..572.6....7.9..5......3...8..9......3..6.
.8.2...5......................6.........4....5.4..7....2....9.5..84...236.1.9....
.......2....4....82.....6.1....6.......8...7..9....8..3.6.5.....12.8.9...4.6.31..
9.5..3....23......................9......2.45.5.....31.7.5.48.3...7.....4.1.6..7.


Solution

Code:
419527638567138492832694571125473869948261753376985124754312986683749215291856347
964153872527684319138279546792418635813965724645327198451796283376842951289531467
986273451215984376347156289879621534132549768564837192423768915798415623651392847
879516423165432798234978651458267319623891574791345862386159247512784936947623185
915873426623945187847216359364157298189632745752489631276594813538721964491368572


However, JSudoku indicates there are multiple solutions. Does anyone else (thinking Mike Metcalfe) have a solver that can validate if this grid has a unique solution or not.

Thanks!
Back to top
View user's profile Send private message
m_b_metcalf

Joined: 13 Mar 2006
Posts: 210
:
Location: Berlin

Items
PostPosted: Mon Aug 10, 2009 1:36 pm    Post subject: Re: Is this Samurai puzzle unique? Reply with quote

garthd wrote:
Does anyone else (thinking Mike Metcalf) have a solver that can validate if this grid has a unique solution or not.

He does, but is away from base until the end of the month.

Sorry,

Mike Metcalf
Back to top
View user's profile Send private message
tarek

Joined: 31 Dec 2005
Posts: 153
:
Location: London, UK

Items
PostPosted: Mon Aug 10, 2009 7:57 pm    Post subject: Reply with quote

Hi garthd,

Code:
Solution 1

219534678567198432834627591125473869948216753376985124451362987683749215792851346
542163879768954312931278546897412635413695728625387194156749283374826951289531467
987234156215869374346571289132658497879143562564927831423786915798415623651392748
879516423165432798234978651458267319623891574791345862386159247512784936947623185
915683427623457189748291356362145798197832645854976231279514863536728914481369572
+-------+-------+-------+-------+-------+-------+-------+
| 2 1 9 | 5 3 4 | 6 7 8 |       | 5 4 2 | 1 6 3 | 8 7 9 |
| 5 6 7 | 1 9 8 | 4 3 2 |       | 7 6 8 | 9 5 4 | 3 1 2 |
| 8 3 4 | 6 2 7 | 5 9 1 |       | 9 3 1 | 2 7 8 | 5 4 6 |
+-------+-------+-------+-------+-------+-------+-------+
| 1 2 5 | 4 7 3 | 8 6 9 |       | 8 9 7 | 4 1 2 | 6 3 5 |
| 9 4 8 | 2 1 6 | 7 5 3 |       | 4 1 3 | 6 9 5 | 7 2 8 |
| 3 7 6 | 9 8 5 | 1 2 4 |       | 6 2 5 | 3 8 7 | 1 9 4 |
+-------+-------+-------+-------+-------+-------+-------+
| 4 5 1 | 3 6 2 | 9 8 7 | 2 3 4 | 1 5 6 | 7 4 9 | 2 8 3 |
| 6 8 3 | 7 4 9 | 2 1 5 | 8 6 9 | 3 7 4 | 8 2 6 | 9 5 1 |
| 7 9 2 | 8 5 1 | 3 4 6 | 5 7 1 | 2 8 9 | 5 3 1 | 4 6 7 |
+-------+-------+-------+-------+-------+-------+-------+
|       |       | 1 3 2 | 6 5 8 | 4 9 7 |       |       |
|       |       | 8 7 9 | 1 4 3 | 5 6 2 |       |       |
|       |       | 5 6 4 | 9 2 7 | 8 3 1 |       |       |
+-------+-------+-------+-------+-------+-------+-------+
| 8 7 9 | 5 1 6 | 4 2 3 | 7 8 6 | 9 1 5 | 6 8 3 | 4 2 7 |
| 1 6 5 | 4 3 2 | 7 9 8 | 4 1 5 | 6 2 3 | 4 5 7 | 1 8 9 |
| 2 3 4 | 9 7 8 | 6 5 1 | 3 9 2 | 7 4 8 | 2 9 1 | 3 5 6 |
+-------+-------+-------+-------+-------+-------+-------+
| 4 5 8 | 2 6 7 | 3 1 9 |       | 3 6 2 | 1 4 5 | 7 9 8 |
| 6 2 3 | 8 9 1 | 5 7 4 |       | 1 9 7 | 8 3 2 | 6 4 5 |
| 7 9 1 | 3 4 5 | 8 6 2 |       | 8 5 4 | 9 7 6 | 2 3 1 |
+-------+-------+-------+-------+-------+-------+-------+
| 3 8 6 | 1 5 9 | 2 4 7 |       | 2 7 9 | 5 1 4 | 8 6 3 |
| 5 1 2 | 7 8 4 | 9 3 6 |       | 5 3 6 | 7 2 8 | 9 1 4 |
| 9 4 7 | 6 2 3 | 1 8 5 |       | 4 8 1 | 3 6 9 | 5 7 2 |
+-------+-------+-------+-------+-------+-------+-------+

Solution 2

219534678567198432834627591125473869948216753376985124451362987683749215792851346
542163879867954312931278546798412635413695728625387194156749283374826951289531467
987234156215869374346571289132658497879143562564927831423786915798415623651392748
879516423165432798234978651458267319623891574791345862386159247512784936947623185
915683427623457189748291356362145798197832645854976231279514863536728914481369572
+-------+-------+-------+-------+-------+-------+-------+
| 2 1 9 | 5 3 4 | 6 7 8 |       | 5 4 2 | 1 6 3 | 8 7 9 |
| 5 6 7 | 1 9 8 | 4 3 2 |       | 8 6 7 | 9 5 4 | 3 1 2 |
| 8 3 4 | 6 2 7 | 5 9 1 |       | 9 3 1 | 2 7 8 | 5 4 6 |
+-------+-------+-------+-------+-------+-------+-------+
| 1 2 5 | 4 7 3 | 8 6 9 |       | 7 9 8 | 4 1 2 | 6 3 5 |
| 9 4 8 | 2 1 6 | 7 5 3 |       | 4 1 3 | 6 9 5 | 7 2 8 |
| 3 7 6 | 9 8 5 | 1 2 4 |       | 6 2 5 | 3 8 7 | 1 9 4 |
+-------+-------+-------+-------+-------+-------+-------+
| 4 5 1 | 3 6 2 | 9 8 7 | 2 3 4 | 1 5 6 | 7 4 9 | 2 8 3 |
| 6 8 3 | 7 4 9 | 2 1 5 | 8 6 9 | 3 7 4 | 8 2 6 | 9 5 1 |
| 7 9 2 | 8 5 1 | 3 4 6 | 5 7 1 | 2 8 9 | 5 3 1 | 4 6 7 |
+-------+-------+-------+-------+-------+-------+-------+
|       |       | 1 3 2 | 6 5 8 | 4 9 7 |       |       |
|       |       | 8 7 9 | 1 4 3 | 5 6 2 |       |       |
|       |       | 5 6 4 | 9 2 7 | 8 3 1 |       |       |
+-------+-------+-------+-------+-------+-------+-------+
| 8 7 9 | 5 1 6 | 4 2 3 | 7 8 6 | 9 1 5 | 6 8 3 | 4 2 7 |
| 1 6 5 | 4 3 2 | 7 9 8 | 4 1 5 | 6 2 3 | 4 5 7 | 1 8 9 |
| 2 3 4 | 9 7 8 | 6 5 1 | 3 9 2 | 7 4 8 | 2 9 1 | 3 5 6 |
+-------+-------+-------+-------+-------+-------+-------+
| 4 5 8 | 2 6 7 | 3 1 9 |       | 3 6 2 | 1 4 5 | 7 9 8 |
| 6 2 3 | 8 9 1 | 5 7 4 |       | 1 9 7 | 8 3 2 | 6 4 5 |
| 7 9 1 | 3 4 5 | 8 6 2 |       | 8 5 4 | 9 7 6 | 2 3 1 |
+-------+-------+-------+-------+-------+-------+-------+
| 3 8 6 | 1 5 9 | 2 4 7 |       | 2 7 9 | 5 1 4 | 8 6 3 |
| 5 1 2 | 7 8 4 | 9 3 6 |       | 5 3 6 | 7 2 8 | 9 1 4 |
| 9 4 7 | 6 2 3 | 1 8 5 |       | 4 8 1 | 3 6 9 | 5 7 2 |
+-------+-------+-------+-------+-------+-------+-------+


tarek
Back to top
View user's profile Send private message
garthd

Joined: 29 Apr 2006
Posts: 32
:

Items
PostPosted: Thu Aug 13, 2009 8:56 pm    Post subject: Is this Samurai puzzle unique Reply with quote

Damn - I've realised I've done something quite dumb. I set up my solver so it would generate all possible combinations for each overlapping subgrid - I was then using this to test each of the four 'outer' grids in turn for a unique solution. However, I've realised that this will lead to a single valid solution (if one exists) but doesn't give any capacity to confirm if a puzzle is genuinely unique or not...back to the drawing board. I think a better way is perhaps to try and work out solutions for the middle grid, and then look at solving the outer grids
Back to top
View user's profile Send private message
m_b_metcalf

Joined: 13 Mar 2006
Posts: 210
:
Location: Berlin

Items
PostPosted: Fri Feb 26, 2010 8:08 am    Post subject: Re: Is this Samurai puzzle unique Reply with quote

garthd wrote:
...back to the drawing board. I think a better way is perhaps to try and work out solutions for the middle grid, and then look at solving the outer grids

If the middle grid has only five clues (a possibility demonstrated elsewhere), you might find that the number of solutions to the middle grid turns out to be rather large! One method is to try to advance the solution to each grid as far as possible iteratively, taking each grid in turn, the middle one last, and sharing the candidates in the overlapping regions. That will solve many, but not all, samurais.

Regards,

Mike Metcalf
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Sudoku Programmers Forum Index -> Exotic sudoku All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum
Sudoku Programmers topic RSS feed 


Powered by phpBB © 2001, 2005 phpBB Group

Igloo Theme Version 1.0 :: Created By: Andrew Charron